
CS395T: Continuous Algorithms, Part XVII
Langevin algorithms

Kevin Tian

1 W 2
2 convergence of unadjusted Langevin

In Part XVI, we gave tools for understanding the convergence of the Langevin dynamics,

dxt = −∇V (xt)dt+
√

2dBt. (1)

For instance, we gave a simple coupling argument showing that when the target stationary distri-
bution π? ∝ exp(−V ) (Theorem 1, Part XVI) is strongly logconcave, then the Langevin dynamics
converge linearly in W 2

2 (Theorem 2, Part XVI). Moreover, using tools from Markov semigroup
theory, we established that when the stationary distribution satisfies weaker functional inequalities
such as Poincaré or log-Sobolev, the Langevin dynamics (1) actually converge under stronger error
metrics such as χ2 or DKL. Unfortunately, these results do not immediately lead to implementable
algorithms, because they only hold in continuous time.

Our goal in this lecture is now to give an introduction to convergence guarantees for discrete-time
approximate implementations of the Langevin dynamics. In this and the following section, we will
specifically focus on the unadjusted Langevin algorithm (ULA), which samples x0 from a starting
distribution π0, and for a step size η > 0, iterates1

x(k+1) ← x(k) − η∇V (x(k)) +
√

2ηξ(k), where ξk ∼ N (0d, Id). (2)

The motivation for considering (2), a forward Euler discretization of the Langevin dynamics, is that
it only requires one query to ∇V , as opposed to running (1) which would require an unbounded
number of queries. This is entirely analogous to the relationship between gradient descent (a
discrete-time algorithm) and its continuous-time counterpart, gradient flow.

It is straightforward to check that the iteration (2) is equivalently induced by the SDE

dxt = −∇V (x0)dt+
√

2dBt (3)

up to time t = η, initialized at x0 ← x(k). In other words, rather than the position-dependent
drift ∇V (xt) typically used in the Langevin dynamics, ULA uses a constant drift ∇V (x0). In this
sense, the (discrete-time) ULA is simply an Euler discretization of the (continuous-time) Langevin
dynamics, just as gradient descent is an Euler discretization of gradient flow (Part II).

Our strategy for analyzing the convergence of (2) under strong logconcavity, when the error met-
ric is W 2

2 , is then fairly straightforward. We first use rapid convergence of the continuous-time
Langevin dynamics as in Theorem 2, Part XVI, and then bound the discretization error through
a coupling argument. We introduce two standard helper claims which help in our analysis.

Lemma 1. Let π? ∝ exp(−V ), where V : Rd → R is L-smooth. Then,

Ex∼π?
[
‖∇V (x)‖22

]
≤ Ld.

1In this lecture, for consistency with Part XIII, we use superscripts to denote an iteration count for ULA, to
contrast with subscripts which are used to indicate the passage of time.
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Proof. Shifting V by a constant so
∫

exp(−V (x))dx = 1 and integrating by parts,

Ex∼π?
[
‖∇V (x)‖22

]
= −

∫
〈∇V (x),∇ exp(−V (x))〉 dx

=

∫
∇ · (∇V (x)) exp(−V (x))dx

=

∫
Tr
(
∇2V (x)

)
exp(−V (x))dx ≤ Ld.

Lemma 2. Let {xt}t∈[0,η] follow (1), where V : Rd → R is L-smooth and η ≤ 1
3L . Then,

E
[
‖xη − x0‖22

]
≤ 6η2E

[
‖∇V (x0)‖22

]
+ 12ηd.

Proof. By using ‖a + b + c‖22 ≤ 3 ‖a‖22 + 3 ‖b‖22 + 3 ‖c‖22, we have for any t ∈ [0, η],

E
[
‖xt − x0‖22

]
= E

[∥∥∥∥−∫ t

0

∇V (xs)ds+
√

2Bt

∥∥∥∥2

2

]

≤ 3t2E
[
‖∇V (x0)‖22

]
+ 3E

[∥∥∥∥∫ t

0

(∇V (xs)−∇V (x0))ds
∥∥∥∥2

2

]
+ 6E ‖Bt‖22

≤ 3t2E
[
‖∇V (x0)‖22

]
+ 3tE

[∫ t

0

‖∇V (xs)−∇V (x0)‖22 ds
]

+ 6E ‖Bt‖22

≤ 3η2E
[
‖∇V (x0)‖22

]
+ 3ηL2E

[∫ t

0

‖xs − x0‖22 ds
]

+ 6ηd.

(4)

The second-to-last inequality was due to Cauchy-Schwarz, i.e., for {vs}s∈[0,t] ⊂ Rd,∥∥∥∥∫ t

0

vsds
∥∥∥∥2

2

=

∫ t

0

∫ t

0

〈vs,vs′〉 dsds′

≤
∫ t

0

∫ t

0

(
1

2
‖vs‖22 +

1

2
‖vs′‖22

)
dsds′ = t

∫ t

0

‖vs‖22 ds,
(5)

and the last inequality in (4) used our smoothness assumption. Therefore, the conclusion follows
from a variant of Grönwall’s inequality (Fact 1, Part II), which states that if {Φt}t∈[0,η] satisfies
the integral inequality Φt ≤ C1 + C2

∫ t
0

Φsds, then Φη ≤ C1 exp(C2η). We apply this to Φt :=
E[‖xt − x0‖22] and use the assumption on η, yielding the claim:

E
[
‖xη − x0‖22

]
≤ exp

(
3η2L2

) (
3η2E

[
‖∇V (x0)‖22

]
+ 6ηd

)
≤ 6η2E

[
‖∇V (x0)‖22

]
+ 12ηd.

We can now analyze the discretization error of one step of the unadjusted Langevin algorithm.

Lemma 3. Let V : Rd → R be L-smooth and µ-strongly convex. Let x0 ∼ π0, let {xt}t∈[0,η] follow
(3), and let πη denote the law of xη. Then, for η ≤ µ

10L2 ,

W 2
2 (πη, π

?) ≤
(

1− µη

2

)
W 2

2 (π0, π
?) +

32η2L2d

µ
.

Proof. We first introduce some simplifying notation. Let {x̄t}t∈[0,η] follow (1), starting from x̄0 =
x0, and with law π̄t at time t ∈ [0, η]. Then the proof of Theorem 2, Part XVI shows that

W 2
2 (π̄η, π

?) ≤ exp (−2µη)W 2
2 (π0, π

?). (6)
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Next, applying Lemma 2 (with η ← t for each t ∈ [0, η]), and using the coupling γη of πη and π̄η
which share a copy of Brownian motion driving the respective SDEs, shows that

W 2
2 (πη, π̄η) ≤ E(xη,x̄η)∼γη

[
‖xη − x̄η‖22

]
= E

[∥∥∥∥∫ η

0

(∇V (xt)−∇V (x0))dt
∥∥∥∥2

2

]

≤ ηL2E

[∫ η

0

‖xt − x0‖22 dt
]
≤ 6η4L2E

[
‖∇V (x0)‖22

]
+ 12η3L2d.

In the second-to-last inequality, we again used (5) and smoothness, and in the last inequality, we
gained a factor of η by using Lemma 2 at each time t ∈ [0, η]. We further have, for the optimal
coupling γ ∈ C(π0, π

?) realizing W 2
2 (π0, π

?),

E
[
‖∇V (x0)‖22

]
≤ 2Ex?∼π?

[
‖∇V (x?)‖22

]
+ 2E(x0,x?)∼γ

[
‖∇V (x0)−∇V (x?)‖22

]
≤ 2Ld+ 2L2E(x0,x?)∼γ

[
‖x0 − x?‖22

]
= 2Ld+ 2L2W 2

2 (π0, π
?),

(7)

using Lemma 1. Combining the above displays and using ηL ≤ 1
10 implies

W 2
2 (πη, π̄η) ≤ 16η3L2d+ 12η4L4W 2

2 (π0, π
?). (8)

Finally, because any three vectors xη ∼ πη, x̄η ∼ π̄η,x?η ∼ π? satisfy

∥∥xη − x?η
∥∥2

2
≤ (1 + µη)

∥∥x̄η − x?η
∥∥2

2
+

(
1 +

1

µη

)
‖xη − x̄η‖22 ,

we combine (6) and (8) to obtain the conclusion:

W 2
2 (πη, π

?) ≤ (1 + µη)W 2
2 (π̄η, π

?) +

(
1 +

1

µη

)
W 2

2 (πη, π̄η)

≤ (1 + µη) exp (−2µη)W 2
2 (π0, π

?) +

(
1 +

1

µη

)(
16η3L2d+ 12η4L4W 2

2 (π0, π
?)
)

≤
(

1− µη

2

)
W 2

2 (π0, π
?) +

32η2L2d

µ
.

By iterating upon Lemma 3, we obtain a convergence rate for the unadjusted Langevin algorithm
in the W 2

2 error metric. As we will discuss in Section 4, this analysis can be slightly improved.

Theorem 1 (W 2
2 convergence of unadjusted Langevin). Let V : Rd → R be L-smooth and µ-

strongly convex, and let π? ∝ exp(−V ), κ := L
µ , ε ∈ (0, 1). Let x(0) ← argminx∈RdV (x), and

consider iterating (2) for 0 ≤ k < K with η = ε2µ
128L2d . Then, if π(K) denotes the law of x(K),

µW 2
2

(
π(K), π?

)
≤ ε2, for K ≥ 256κ2d

ε2
log

(
4d

ε2

)
.

Proof. Let π(k) denote the law of x(k) for all 0 ≤ k ≤ K, and recall that Lemma 5, Part XVI shows
that W 2

2 (π(0), π?) ≤ 2d
µ . Moreover, applying Lemma 3 with π0 ← π(k) and πη ← π(k+1) shows

W 2
2

(
π(k+1), π?

)
≤
(

1− µη

2

)
W 2

2

(
π(k), π?

)
+

32η2L2d

µ
,

for each 0 ≤ k < K. Recursing upon this guarantee yields

W 2
2

(
π(K), π?

)
≤ exp

(
−µηK

2

)
W 2

2

(
π(0), π?

)
+

32η2L2d

µ
· 2

µη
,

where we summed a geometric sequence, and our choices of η,K give the claim.
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We remark that we use the more natural error metric µW 2
2 in Theorem 1 as opposed to W 2

2 , as it
is a scale-invariant quantity in the strong logconcavity parameter µ, and is directly comparable to
DKL(·‖π?) via the Otto-Villani theorem, i.e., Lemma 13, Part XVI), which states

µ

2
W 2

2 (π, π?) ≤ DKL (π‖π?) ,

if π? satisfies a log-Sobolev inequality with constant
1

µ
.

(9)

We also showed in Section 5.2, Part XVI that µ-strong logconcavity implies such a log-Sobolev
inequality holds. In the following section, we give an alternative analysis of (2) which shows that
we can directly achieve bounds on DKL(π(K)‖π?), strengthening Theorem 1 as implied by (9).

2 DKL convergence of unadjusted Langevin
Our goal in this section is to give a discrete-time analog of Lemma 10, Part XVI developed by
[VW19], which shows rapid convergence of DKL(πt‖π?) along the Langevin dynamics when π?

satisfies a log-Sobolev inequality. As in Section 1, the simplest way to measure discretization error
is in the W 2

2 metric, as we have already developed such tools (e.g., Lemma 2). We will use the
Otto-Villani theorem (9) to relate these W 2

2 errors back to the function value of interest, i.e.,
DKL (·‖π?). We again start by analyzing the change in KL divergence of the law of an iterate after
one step of ULA, which runs the Euler-discretized SDE (3) for time η.

Lemma 4. Let V : Rd → R be L-smooth and suppose π? ∝ exp(−V ) satisfies a log-Sobolev
inequality with constant 1

µ . Let x0 ∼ π0, let {xt}t∈[0,η follow (3), and let πη denote the law of xη.
Then for η ≤ µ

10L2 ,

DKL (πη‖π?) ≤
(

1− µη

2

)
DKL (π0‖π?) + 9η2L2d.

Proof. Throughout this proof, let π0t : Rd × Rd → R≥0 be the density corresponding to the joint
law of (x0,xt), for all t ∈ [0, η]. We also use the notation π0|t(x0 | xt) to mean the conditional
distribution of x0 given xt, and similarly define πt|0(xt | x0), such that

π0t(x0,xt) = π0(x0)πt|0(xt | x0) = πt(xt)π0|t(x0 | xt). (10)

Our first step is to derive a continuity equation (in the sense of Lemma 6, Part XVI) for the SDE
(3). By using the Fokker-Planck equation (Proposition 3, Part XVI), we have that

∂

∂t
πt|0(x | x0) = ∇ ·

(
∇V (x0)πt|0(x | x0)

)
+ ∆πt|0(x | x0).

Therefore, averaging over x0 ∼ π0, we have

∂

∂t
πt(x) =

∫ (
∇ ·
(
∇V (x0)πt|0(x | x0)

)
+ ∆πt|0(x | x0)

)
π0(x0)dx0

=

∫
(∇ · (∇V (x0)π0t(x0,x)) + ∆π0t(x0,x)) dx0

= ∇ ·
(
πt(x)

∫
π0|t(x0 | x)∇V (x0)dx0

)
+ ∆πt(x)

= ∇ ·
(
πt(x)Ex0∼π0|t [∇V (x0) | xt = x]

)
+ ∆πt(x)

= ∇ ·
(
πt(x)∇ log

(
πt(x)

π?(x)

))
+∇ ·

(
πt(x)Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]

)
.

(11)

Comparing to Eq. (16), Part XVI, we see that the continuity equations differ only by a term that
looks like Ex0∼π0|t [∇V (x0) −∇V (x) | xt = x]. At this point, our proof is very similar to Lemma

4



10, Part XVI, except we use the tools from Section 1 to bound the discretization error. Concretely,

∂

∂t
DKL (πt‖π?) =

∂

∂t

(∫
πt(x) log

(
πt(x)

π?(x)

)
dx
)

=

∫
log

(
πt(x)

π?(x)

)
∇ ·
(
πt(x)∇ log

(
πt(x)

π?(x)

))
dx

+

∫
log

(
πt(x)

π?(x)

)
∇ ·
(
πt(x)Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]

)
dx

= −
∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2

2

πt(x)dx

−
∫ 〈
∇ log

(
πt(x)

π?(x)

)
,Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]

〉
πt(x)dx

≤ −1

2

∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2

2

πt(x)dx

+
1

2

∫ ∥∥Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]
∥∥2

2
πt(x)dx

≤ −1

2

∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2

2

πt(x)dx +
1

2
E(x0,x)∼π0t

[
‖∇V (x0)−∇V (x)‖22

]
,

(12)
where the second line again used ∂

∂t

∫
πt(x)dx = ∂

∂t1 = 0 and substituted (11), the fourth line used
integration by parts, the sixth line used 〈a,b〉 ≤ 1

2 ‖a‖
2
2 + 1

2 ‖b‖
2
2, and the last line used Jensen’s

inequality. Now, by plugging in the log-Sobolev inequality (in the form of Lemma 8, Part XVI)
into (12), as well as our bound from Lemma 2,

∂

∂t
DKL (πt‖π?) ≤ −µDKL (πt‖π?) + 3η2L2E

[
‖∇V (x0)‖22

]
+ 6ηL2d.

Moreover, using the bound (7) with Talagrand’s transportation inequality (9) shows

E
[
‖∇V (x0)‖22

]
≤ 2Ld+ 2L2W 2

2 (π0, π
?) ≤ 2Ld+

4L2

µ
DKL (π0‖π?) .

Combining the above two displays and using our bound on η finally yields

∂

∂t
DKL (πt‖π?) ≤ −µDKL (πt‖π?) + 9ηL2d+

12η2L4

µ
DKL (π0‖π?)

=⇒ ∂

∂t
(exp (µt)DKL (πt‖π?)) ≤ exp (µt)

(
9ηL2d+

12η2L4

µ
DKL (π0‖π?)

)
.

The conclusion then follows from integrating and using our choice of η:

DKL (πη‖π?) ≤ exp (−µη)

(
DKL (π0‖π?) + η exp(µη)

(
9ηL2d+

12η2L4

µ
DKL (π0‖π?)

))
≤
(

1− µη

2

)
DKL (π0‖π?) + 9η2L2d.

At this point, the same recursion as used in Theorem 1 (with slightly different parameters), using
the one-step guarantee in Lemma 4 rather than Lemma 3, yields our desired convergence rate.

Theorem 2 (DKL convergence of unadjusted Langevin). Let V : Rd → R be L-smooth and suppose
π? ∝ exp(−V ) satisfies a log-Sobolev inequality with constant 1

µ , and let κ := L
µ , ε ∈ (0, 1). Let

x(0) ∼ π0, and consider iterating the update (2) for 0 ≤ k < K with η = ε2µ
72L2d . Then, if π(K)

denotes the law of x(K),

DKL

(
π(K)‖π?

)
≤ ε2

2
for K ≥ 144κ2d

ε2
log

(
4DKL

(
π(0)‖π?

)
ε2

)
.
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Proof. As in the proof of Theorem 1, applying Lemma 4 for K iterations yields

DKL

(
π(K)‖π?

)
≤ exp

(
−µηK

2

)
DKL

(
π(0)‖π?

)
+ 9η2L2d · 2

µη

≤ exp

(
−µηK

2

)
DKL

(
π(0)‖π?

)
+
ε2

4
≤ ε2

2
.

As discussed at the end of Section 1, the assumptions made in Theorem 2 are actually weaker than
those in Theorem 1, since strong logconcavity implies a log-Sobolev inequality (but not the other
way around). Moreover, Theorem 2 implies Theorem 1 up to constants, via (9). The reason for
the scaling ε2

2 in Theorem 2 is that Pinsker’s inequality then shows DTV(π(K), π?) ≤ ε as well.

3 Metropolis-adjusted Langevin algorithm
In this section, we show give high-accuracy convergence rates for Langevin-based algorithms in
discrete time, by making use of the Metropolis-Hastings filter (Eq. (5), Part XV). Unlike the
unadjusted Langevin algorithms analyzed in Sections 1 and 2, the Metropolis-adjusted Langevin
algorithm (MALA) actually has a stationary distribution of π? ∝ exp(−V ), rather than a biased
approximation thereof. This lets us use tools from Part XV to give gradient query complexities
depending polylogarithmically on 1

ε , where ε is a specified distance bound from π?. In contrast,
Theorems 1 and 2 required querying ∇V a number of times scaling polynomially in 1

ε .

We now define the MALA iteration for sampling from π? ∝ exp(−V ), parameterized by a step size
η > 0. Following notation from Section 2.1, Part XV, the proposal distribution from x ∈ Rd is

Px = N (x− η∇V (x), 2ηId) . (13)

Observe that this proposal distribution is simply the distribution of x(k+1) induced by one step of
ULA (2), starting from x(k) ← x. Next, the MALA transition density is the result of applying a
Metropolis-Hastings correction to (13), i.e.,

Tx(y) = Px(y) min

(
1,
π?(y)Py(x)

π?(x)Px(y)

)
, for all y ∈ Rd, y 6= x. (14)

To analyze the convergence of MALA, specified by transitions (14), we leverage Sections 2.2 and
3, Part XV, specifically Propositions 1 and 3. These results give a recipe for achieving an error
bound of ε in χ2 assuming three conditions have been met.

1. We can sample from π0, a β-warm distribution for π?.

2. The stationary distribution π? satisfies an isoperimetric inequality.

3. There is a set Ω ⊂ Rd with large stationary measure π?(Ω) ≥ 1 − ε2

3β2 such that for all
sufficiently close pairs of x,x′ ∈ Ω, we have DTV(Tx, Tx′) ≤ 1

2 .

Under the latter two conditions above, Proposition 3, Part XV proves a conductance bound over
Ω, and this can be put into Proposition 1, Part XV with the first condition above to give an overall
mixing time bound. We now address each condition, beginning with the warm start.

Lemma 5. Let V : Rd → R be L-smooth and µ-strongly convex, and let κ := L
µ , ε ∈ (0, 1). For

x? := argminx∈RdV (x), π0 := N (x?, 1
LId) is β-warm with respect to π?, for β = κ

d
2 .

Proof. By smoothness and strong convexity, we have for all x ∈ Rd,

f(x?) +
µ

2
‖x− x?‖22 ≤ f(x) ≤ f(x?) +

L

2
‖x− x?‖22 .
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Thus, by plugging in the exact formula for π0, we derive

π0(x)

π?(x)
=

∫
exp(−f(y))dy
exp(−f(x))

·
exp

(
−L2 ‖x− x?‖22

)
(2πL−1)

d
2

≤
∫

exp(−f(x?)− µ
2 ‖y − x?‖22)dy

exp(−f(x?)− L
2 ‖x− x?‖22)

·
exp

(
−L2 ‖x− x?‖22

)
(2πL−1)

d
2

=

∫
exp(−µ2 ‖y − x?‖22)dy

(2πL−1)
d
2

=
(2πµ−1)

d
2

(2πL−1)
d
2

= κ
d
2 .

Next, we provide a useful isoperimetric bound for strongly logconcave densities.

Lemma 6. Let π? be a µ-strongly logconcave density on Rd, and let S1, S2, S3 partition Rd. Then,

π?(S3)

(minx∈S1,y∈S2 ‖x− y‖2)
≥ π?(S1)π?(S2)

2

√
µ log

(
1 +

1

min (π?(S1), π?(S2))

)
. (15)

Proof. We describe the main ideas behind the proof here, deferring full details to Lemma 16,
[CDWY20]. The idea is to use a localization argument (e.g., Proposition 4, Part XV) to show that
it suffices to prove (15) for π? = N (x, 1

µ ), restricted to a one-dimensional subspace of Rd.

The rough strategy for doing so is to first express (15) using linear inequality constraints on π?,
similarly to Lemma 3, Part XV. Then, the localization lemma (Proposition 4, Part XV) implies
that it suffices to prove (15) for all log-linear densities in one dimension, convolved with N (0, 1

µ ).
As discussed after Proposition 4, Part XV, the localization lemma applies here because strongly
logconcave densities are closed under restricting to convex sets.

Log-linear densities in one dimension convolved with N (0, 1
µ ) are just recentered Gaussians of the

form N (x, 1
µ ). For such densities, it is a classical fact that (15) holds. We can first restrict to

the case of S1 = (−∞, a], S3 = (a, b), and S2 = [b,∞) without loss of generality, by a similar
partitioning argument as used in Lemma 3, Part XV. Then, a bound of the form (15) holds by an
averaging argument over S3, and standard tail bounds over Gaussian random variables.

To provide some intuition for this, it turns out that the extreme case is where a → b > 0 (i.e.,
S2 = [b,∞) has smaller mass under π?, and S3 approaches a single point, so the left-hand side of
(15) is roughly the density at b). We can estimate using Mill’s inequality that

π?(S2) = Pr
ξ∼N (0, 1µ )

[ξ > b] ≈ 1

b
√
µ

exp

(
−µb

2

2

)
.

A straightforward calculation now shows that both sides of (15) scale as

√
µ exp

(
−µb

2

2

)
.

Note that Lemma 6 proves that the isoperimetric constant (Definition 4, Part XV) of any µ-strongly
logconcave π? is Ω(

√
µ). However, we can say more: the isoperimetry improves at smaller scales

of min(π?(S1), π?(S2)) (i.e., small sets “expand” more). This turns out to significantly sharpen
mixing time bounds in certain applications, see the discussion after Proposition 1, Part XV.

We next provide an Ω with enough regularity to ensure that Tx, Tx′ have significant overlap, for
nearby x,x′ ∈ Ω. In our case it is enough to take Ω to be a sufficiently large `2 norm ball.

Lemma 7. Let π? ∝ exp(−V ) be a µ-strongly logconcave density on Rd, and let x? := argminx∈RdV (x).
For all δ ∈ (0, 1), we have

Pr
x∼π?

‖x− x?‖ >

√
2d

µ
+

√
2 log(1

δ )

µ

 ≤ δ.
7



Proof. Recall that E ‖x− x?‖2 ≤ ( 2d
µ )1/2, by Lemma 5, Part XVI and Jensen’s inequality. Also,

π? satisfies a log-Sobolev inequality with constant 1
µ (Theorem 4, Part XVI), so the conclusion

now follows from Lemma 11, Part XVI, because ‖x− x?‖2 is a 1-Lipschitz function.

Lemma 8. In the setting of Lemma 7, let V be L-smooth, let R > 0, and let Ω := B(x?, R).
Assume that LR2 ≥ d. Then if η ≤ 1

500L2R2d in (13), for all x,x′ ∈ Ω, we have

DTV (Tx, Tx′) ≤ 1

2
if ‖x− x′‖2 ≤

√
η

5
.

Proof. We claim that such nearby ‖x− x′‖2 ≤ satisfy

DTV (Px,Px′) ≤ 1

6
, (16)

and further, that all x ∈ Ω satisfy

DTV (Px, Tx) ≤ 1

6
. (17)

Combining (16) and (17) then gives the desired claimDTV(Tx, Tx′) ≤ DTV(Tx,Px)+DTV(Px,Px′)+
DTV(Px′ , Tx′) ≤ 1

2 . To prove (16), we have for Px,Px′ defined in (13) that

DTV (Px,Px′) ≤
√

1

2
DKL (Px‖Px′)

=
‖(x− η∇V (x))− (x′ − η∇V (x′))‖2√

8µ

≤
(1 + ηL) ‖x− x′‖2√

8η
≤
‖x− x′‖2√

2η
≤ 1

6
,

(18)

where the first line in (18) used Pinsker’s inequality (i.e., a continuous-valued analog of Lemma
6 and Remark 5, Part III), the second line used an exact formula for the KL divergence between
multivariate Gaussians, and the third line used smoothness of V and our bounds on η, ‖x− x′‖2.

We are left to show (17). First, note that a draw from Px can be decomposed as x−η∇V (x)+
√

2ηξ,
for ξ ∼ N (0d, Id). We claim that with probability ≥ 11

12 , if d is sufficiently large,

‖ξ‖2 ≤
√

2d, (19)

which follows from standard chi-squared tail bounds (see e.g., the discussion after Theorem 2, Part
VI). Next, observe that drawns from Px and Tx can be coupled as long as the Metropolis-Hastings
filter is not applied. Thus, we have

DTV (Px, Tx) = 1− Eξ∼N (0d,Id)

[
min

(
1,
π?(y)Py(x)

π?(x)Px(y)

)]
, for y := x− η∇V (x) +

√
2ηξ. (20)

Finally, we claim that whenever ξ satisfies (19), we have that

π?(y)Py(x)

π?(x)Px(y)
≥ 11

12
, (21)

This would conclude the proof, because by Markov’s inequality,

Eξ∼N (0d,Id)

[
min

(
1,
π?(y)Py(x)

π?(x)Px(y)

)]
≥ 11

12
Pr

ξ∼N (0d,Id)

[
π?(y)Py(x)

π?(x)Px(y)
≥ 11

12

]
≥
(

11

12

)2

≥ 5

6
,

which plugged into (20) gives our claim (17). To see (21), we have by a direct calculation that

π?(y)Py(x)

π?(x)Px(y)
= exp

−V (y)− ‖x−y+η∇V (y)‖22
4η

−V (x)− ‖x−y+η∇V (x)‖22
4η

 .
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Thus to prove (21) we need to show that

V (x)− V (y) ≥ − 1

24
, ‖x− y + η∇V (x)‖22 − ‖x− y + η∇V (y)‖22 ≥ −

η

6
. (22)

To obtain these bounds, first note that under (19) and ‖x− x?‖2 ≤ R, we have from smoothness
that ‖x− y‖2 ≤ ηLR+ 3

√
ηd, so

V (x)− V (y) ≥ 〈∇V (x),x− y〉 − L

2
‖x− y‖22

≥ −ηL2R2 − 3LR
√
ηd− η2L3R2

2
− 9ηLd

2
≥ − 1

24
,

from our choice of parameters. Similarly, we can verify that

‖x− y + η∇V (x)‖22 − ‖x− y + η∇V (y)‖22 ≥ 2η 〈∇V (x)−∇V (y),x− y〉 − η2 ‖∇V (y)‖22
≥ −

(
2η + η2L

)
L ‖x− y‖22 − η

2L2R2 ≥ −η
6
.

All that is left in our MALA analysis is combining these results within Proposition 1, Part XV.

Theorem 3 (Convergence of Metropolis-adjusted Langevin). Let V : Rd → R be L-smooth and
µ-strongly convex, and let π? ∝ exp(−V ), κ := L

µ , ε ∈ (0, 1). Let x(0) ∼ N (x?, 1
LId) where x? :=

argminx∈RdV (x), and consider iterating the Markov chain with transitions (14) for K iterations.
Then if π(K) denotes the law of x(K), the Kth Markov chain iterate,

χ2
(
π(K)‖π?

)
≤ ε, if η =

1

105Lκd(d log(κ) + log( 1
ε ))

, K = Ω

(
κ2d2 log2

(
d log(κ)

ε

))
.

Proof. Throughout this proof, let β = κ
d
2 be the warmness parameter given by Lemma 5. Our goal

is to apply Proposition 1, Part XV, so the next step is to choose a set Ω with good conductance
properties, and with stationary measure ≥ 1 − ε2

3β2 . Letting δ = ε2

3β2 , Lemma 7 shows we may
choose Ω = B(x?, R) for

R := 10

√
d log(κ) + log

(
1
ε

)
µ

≥

√
2d

µ
+

√
2 log(1

δ )

µ
.

Note that by plugging Lemmas 6 and 8 into Proposition 3, Part XV, we have proven that for
η = 1

500L2R2d , and all τ ∈ (0, 1
2π

?(Ω)), that following Eq. (11), Part XV,

ΦΩ(τ) ≥ min

1

8
,

√
ηµ log(1 + 1

τ )

640

 .

By plugging this into Proposition 1, Part XV (see the discussion thereafter), we conclude that it
is enough to take (for a sufficiently large constant)

K = Ω

(
κ2d2 log2

(
d log(κ)

ε

))
= Ω

(
1

ηµ
log log(β) + log (β) +

1

ηµ
log

(
1

ε

))
.

Remark 1. The analysis of MALA in this section can be sharpened significantly. By being more
careful about the decomposition of the rejection probability as in Lemma 8, [DCWY19, CDWY20]
proved that ≈ κd + κ1.5

√
d iterations of MALA suffice for high-accuracy mixing. This was later

improved to ≈ κd by [LST20], who proved a good conductance bound over a more complex set Ω
where both iterate norms and gradient norms are small. Finally, [CLA+21] directly established a
spectral gap of poly(κ)

√
d for MALA with an appropriate step size. This result on its own gives

mixing times scaling as ≈
√
d only if a polynomially-warm start is provided (recall that the natural

strategy in Lemma 5 only yields β ≈ exp(d)). However, combined with other tools developed in the
literature since, the [CLA+21] strategy yields the sharpest-known mixing bound on MALA.
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4 The frontier
The results presented in this lecture are suggestive of the following natural question: what is the
minimum number of gradient queries needed to sample from π? ∝ exp(−V ) to accuracy ε (in
an appropriate error metric), when V : Rd → R obeys specified regularity conditions (e.g., L-
smoothness and µ-strong convexity)? Recall that in Part II, we gave matching upper and lower
bounds for this question in the context of optimizing V to additive error ε, under a variety of
regularity conditions, e.g., Lipschitzness, smoothness, and strong convexity.

This question was addressed first in [Dal17] for the family of L-smooth and µ-strongly convex
potentials V : Rd → R, parameterizing a target density π? ∝ exp(−V ). Here we primarily discuss
existing sampling theory for this family, parameterized by κ := L

µ . Unfortunately, our current
understanding of even this basic landscape is somewhat murky, with various (sometimes incompa-
rable) guarantees. We restrict our discussion to the following error metrics, for some ε ∈ (0, 1).

• Sampling from within ε in total variation distance to π?.

• Sampling from within ε2 in KL divergence to π? (or, the α-Rényi divergence for α > 1).

• Sampling from within √µε in W2 to π?.

To compare these different notions of convergence, recall that Pinsker’s inequality shows that
convergence in KL divergence implies convergence in total variation, and further, that the Rényi
divergences are monotone nondecreasing in α. Moreover, when V is µ-strongly convex, the Otto-
Villani theorem (Lemma 13, Part XVI) says that convergence in KL divergence implies convergence
in W2. Thus, the relative strength of these metrics is

{DTV,
√
µW2} .

√
DKL .

√
Dα.

Low-accuracy guarantees. Gradient query complexities for samplers are typically parameter-
ized by a function of κ, d, 1

ε , and the low-accuracy regime allows for a polynomial dependence on 1
ε .

In this setting, algorithmic improvements largely come from either considering alternatives to the
Langevin dynamics with the potential for faster mixing (e.g., the underdamped Langevin dynamics
[CCBJ18]), or from considering alternative discretization strategies to the standard naïve forward
Euler strategy [FLO21, BRM25]. Under a W2 notion of convergence, the state-of-the-art result is
by [SL19], who used both of these strategies to achieve a gradient query complexity of

≈ κ
7
6 d

1
6

ε
1
3

+
κd

1
3

ε
2
3

,

via a second-order discretization approach they introduced, the randomized midpoint method. It
is standard to prioritize improvements to the d dependence in this regime (after all, the structural
assumption is that κ is bounded). Thus, the [SL19] rate scales with d

1
3 for W2 convergence.

What is the situation for stronger metrics, e.g., DKL and Dα? Currently, it is only known how to
obtain query complexities of

√
d·poly(κ, 1

ε ) in KL divergence [ZCL+23] or
√
d·poly(κ, 1

ε , α) in Rényi
divergence of order α > 1 [AC24]. These results are based on analyses of Euler discretizations of
the underdamped Langevin dynamics. There are certain challenges involved in the analysis of the
randomized midpoint method under these stronger metrics, though there is certainly potential for
a d

1
3 -type convergence result for all Rényi divergences. On the lower bound side, there is evidence

that current techniques may be bottlenecked at gradient query complexities of ≈ d
1
3 [CLW21];

however, fully algorithm-independent lower bounds in this regime remain lacking.

High-accuracy guarantees. As mentioned previously (Remark 1), [CLA+21] gave a roadmap
towards an ≈

√
d · poly(κ, log( 1

ε )) gradient query complexity: provide a β = poly(d, κ, 1
ε )-warm

start for MALA, using this number of queries. The situation was simplified by [LST21], who gave
a generic reduction, showing that all query complexities in the high-accuracy regime scaled at most
linearly in κ without loss of generality. Finally, [AC24] showed how Rényi divergence guarantees
from low-accuracy samplers could be converted into a warmness bound, and using a new analysis of
the underdamped Langevin dynamics that they provide, gave an end-to-end algorithm using ≈ κ

√
d

queries to sample to high accuracy in Rényi divergence. On the other hand, current techniques
yield no better than lower bounds of ≈

√
κ log(d) [CdDPL+24]. The question of optimal gradient

query algorithms for well-conditioned sampling remains an exciting open problem.
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Source material
Portions of this lecture are based on reference material in [Che24], as well as the author’s own
experience working in the field.
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